Search results for " Minimax"

showing 6 items of 6 documents

Optimal rates of convergence for persistence diagrams in Topological Data Analysis

2013

Computational topology has recently known an important development toward data analysis, giving birth to the field of topological data analysis. Topological persistence, or persistent homology, appears as a fundamental tool in this field. In this paper, we study topological persistence in general metric spaces, with a statistical approach. We show that the use of persistent homology can be naturally considered in general statistical frameworks and persistence diagrams can be used as statistics with interesting convergence properties. Some numerical experiments are performed in various contexts to illustrate our results.

Computational Geometry (cs.CG)FOS: Computer and information sciences[ MATH.MATH-GT ] Mathematics [math]/Geometric Topology [math.GT][STAT.TH] Statistics [stat]/Statistics Theory [stat.TH]Topological Data analysis Persistent homology minimax convergence rates geometric complexes metric spacesGeometric Topology (math.GT)Mathematics - Statistics TheoryStatistics Theory (math.ST)[INFO.INFO-LG] Computer Science [cs]/Machine Learning [cs.LG][STAT.TH]Statistics [stat]/Statistics Theory [stat.TH][INFO.INFO-CG]Computer Science [cs]/Computational Geometry [cs.CG][ STAT.TH ] Statistics [stat]/Statistics Theory [stat.TH][ INFO.INFO-LG ] Computer Science [cs]/Machine Learning [cs.LG]Machine Learning (cs.LG)Computer Science - LearningMathematics - Geometric Topology[INFO.INFO-CG] Computer Science [cs]/Computational Geometry [cs.CG][INFO.INFO-LG]Computer Science [cs]/Machine Learning [cs.LG][MATH.MATH-GT]Mathematics [math]/Geometric Topology [math.GT]FOS: Mathematics[ INFO.INFO-CG ] Computer Science [cs]/Computational Geometry [cs.CG]Computer Science - Computational Geometry[MATH.MATH-GT] Mathematics [math]/Geometric Topology [math.GT]
researchProduct

Le métier de linguiste.

2021

The paper aims to analyze the epistemological status of theoretical linguistics.

Linguistics Language Minimax Recursion Narrative.Settore M-FIL/05 - Filosofia E Teoria Dei Linguaggi
researchProduct

Groups with soluble minimax conjugate classes of subgroups

2008

A classical result of Neumann characterizes the groups in which each subgroup has finitely many conjugates only as central-by-finite groups. If $\mathfrak{X}$ is a class of groups, a group $G$ is said to have $\mathfrak{X}$-conjugate classes of subgroups if $G/core_G(N_G(H)) \in \mathfrak{X}$ for each subgroup $H$ of $G$. Here we study groups which have soluble minimax conjugate classes of subgroups, giving a description in terms of $G/Z(G)$. We also characterize $FC$-groups which have soluble minimax conjugate classes of subgroups.

Mathematics::Group TheoryT57-57.97Conjugacy classeSettore MAT/02 - AlgebraApplied mathematics. Quantitative methodsfc-groupspolycyclic groupssoluble minimax groupsSettore MAT/03 - Geometriasoluble minimax groups $FC$-groups polycyclic groups.conjugacy classes
researchProduct

On $MC$-hypercentral triply factorized groups

2007

A group G is called triply factorized in the product of two subgroups A, B and a normal subgroup K of G ,i fG = AB = AK = BK. This decomposition of G has been studied by several authors, investigating on those properties which can be carried from A, B and K to G .I t is known that if A, B and K are FC-groups and K has restrictions on the rank, then G is again an FC-group. The present paper extends this result to wider classes of FC-groups. Mathematics Subject Classification: 20F24; 20F14

Normal subgroupCombinatoricsSettore MAT/02 - Algebrageneralized $FC$-groupsMathematics Subject ClassificationGroup (mathematics)Product (mathematics)Rank (graph theory)triply factorized groupSettore MAT/03 - GeometriaGroups with soluble minimax conjugacy classeMathematics
researchProduct

The nonabelian tensor product of two soluble minimax groups

2010

Settore MAT/02 - AlgebraChernikov groups soluble minimax groups nonabelian tensor productsSettore MAT/03 - Geometria
researchProduct

Positive solutions for nonlinear Robin problems

2017

We consider a parametric Robin problem driven by the p-Laplacian with an indefinite potential and with a superlinear reaction term which does not satisfy the Ambrosetti-Rabinowitz condition. We look for positive solutions. We prove a bifurcation-type theorem describing the nonexistence, existence and multiplicity of positive solutions as the parameter varies. We also show the existence of a minimal positive solution $\tilde{u}_\lambda$ and establish the monotonicity and continuity of the map $\lambda\to \tilde{u}_\lambda$.

truncation and comparison techniquesminimax positive solutionSettore MAT/05 - Analisi Matematicalcsh:MathematicsMathematics::Analysis of PDEssuperlinear reactionRobin boundary condition superlinear reaction truncation and comparison techniques bifurcation-type result minimax positive solutionRobin boundary conditionbifurcation-type resultlcsh:QA1-939
researchProduct