Search results for " Minimax"
showing 6 items of 6 documents
Optimal rates of convergence for persistence diagrams in Topological Data Analysis
2013
Computational topology has recently known an important development toward data analysis, giving birth to the field of topological data analysis. Topological persistence, or persistent homology, appears as a fundamental tool in this field. In this paper, we study topological persistence in general metric spaces, with a statistical approach. We show that the use of persistent homology can be naturally considered in general statistical frameworks and persistence diagrams can be used as statistics with interesting convergence properties. Some numerical experiments are performed in various contexts to illustrate our results.
Le métier de linguiste.
2021
The paper aims to analyze the epistemological status of theoretical linguistics.
Groups with soluble minimax conjugate classes of subgroups
2008
A classical result of Neumann characterizes the groups in which each subgroup has finitely many conjugates only as central-by-finite groups. If $\mathfrak{X}$ is a class of groups, a group $G$ is said to have $\mathfrak{X}$-conjugate classes of subgroups if $G/core_G(N_G(H)) \in \mathfrak{X}$ for each subgroup $H$ of $G$. Here we study groups which have soluble minimax conjugate classes of subgroups, giving a description in terms of $G/Z(G)$. We also characterize $FC$-groups which have soluble minimax conjugate classes of subgroups.
On $MC$-hypercentral triply factorized groups
2007
A group G is called triply factorized in the product of two subgroups A, B and a normal subgroup K of G ,i fG = AB = AK = BK. This decomposition of G has been studied by several authors, investigating on those properties which can be carried from A, B and K to G .I t is known that if A, B and K are FC-groups and K has restrictions on the rank, then G is again an FC-group. The present paper extends this result to wider classes of FC-groups. Mathematics Subject Classification: 20F24; 20F14
The nonabelian tensor product of two soluble minimax groups
2010
Positive solutions for nonlinear Robin problems
2017
We consider a parametric Robin problem driven by the p-Laplacian with an indefinite potential and with a superlinear reaction term which does not satisfy the Ambrosetti-Rabinowitz condition. We look for positive solutions. We prove a bifurcation-type theorem describing the nonexistence, existence and multiplicity of positive solutions as the parameter varies. We also show the existence of a minimal positive solution $\tilde{u}_\lambda$ and establish the monotonicity and continuity of the map $\lambda\to \tilde{u}_\lambda$.